Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554954

RESUMO

Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.

2.
J Sci Food Agric ; 104(5): 2587-2596, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37984850

RESUMO

BACKGROUND: Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS: This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION: This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.


Assuntos
Mirtilos Azuis (Planta) , Lacticaseibacillus rhamnosus , Lactobacillales , Lactobacillus plantarum , Cromatografia Gasosa-Espectrometria de Massas , Alimentos , Lactobacillus plantarum/metabolismo , Lactobacillus acidophilus , Fermentação
3.
Food Chem Toxicol ; 150: 112096, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647349

RESUMO

To unravel the potential of Licochalcone B as an anti-tumour phytochemical agent and evaluate its underlying mechanisms, we analyzed the mRNAs and miRNAs expression profiles of HepG2 cells in response to Licochalcone B (120 µM). mRNA and miRNA expression libraries were conducted and functional analysis for differential expression mRNAs was carried out utilizing Clue GO. We found 763 Licochalcone B -responsive differently expressed genes, among them, 572 mRNAs were up-regulated and 191 mRNAs were down-regulated, many of which were related to the MAPK signaling pathway. A protein-protein interaction network was constructed to discover the hub genes, and IL6, FOS, JUN, NOTCH1, UBC, UBB, CXCL8, CDKN1A, IL1B, ATF3, and GATA3 genes were screened out. Additionally, miRNAs engaged in Licochalcone B -mediated regulation on HepG2 cells were also studied. 85 differential expression miRNAs were identified, including 39 up-regulated miRNAs and 46 down-regulated miRNAs. Co-expression of miRNA-mRNA network was created and two key miRNAs (hsa-miR-29b-3p and hsa-miR-96-5p) were identified. These recognized key genes, miRNA, and the miRNA-mRNA regulatory network may provide clues to understand the molecular mechanism of Licochalcone B as an apoptotic inducer which may offer hint for its application as a functional food component.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Antineoplásicos/química , Chalconas/química , Citocinas/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , MicroRNAs/genética , RNA Mensageiro/genética
4.
Front Nutr ; 8: 807574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988109

RESUMO

Hepatocellular carcinoma is a malignancy with a low survival rate globally, and there is imperative to unearth novel natural phytochemicals as effective therapeutic strategies. Licochalcone A is a chalcone from Glycyrrhiza that displayed various pharmacological efficacy. A globally transcriptome analysis was carried out to reveal the gene expression profiling to explore Licochalcone A's function as an anti-cancer phytochemical on HepG2 cells and investigate its potential mechanisms. Altogether, 6,061 dysregulated genes were detected (3,414 up-regulated and 2,647 down-regulated). SP1 was expected as the transcription factor that regulates the functions of most screened genes. GO and KEGG analysis was conducted, and the MAPK signaling pathway and the FoxO signaling pathway were two critical signal pathways. Protein-protein interaction (PPI) network analysis based on STRING platform to discover the hub genes (MAPK1, ATF4, BDNF, CASP3, etc.) in the MAPK signaling pathway and (AKT3, GADD45A, IL6, CDK2, CDKN1A, etc.) the FoxO signaling pathway. The protein level of essential genes that participated in significant pathways was consistent with the transcriptome data. This study will provide an inclusive understanding of the potential anti-cancer mechanism of Licochalcone A on hepatocellular, signifying Licochalcone A as a promising candidate for cancer therapy.

5.
Bioprocess Biosyst Eng ; 43(7): 1299-1307, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193756

RESUMO

(R)-Mandelic acid (R-MA) is a key precursor for the synthesis of semi-synthetic penicillin, cephalosporin, anti-obesity drugs, antitumor agents, and chiral resolving agents for the resolution of racemic alcohols and amines. In this study, an enzymatic method for the large-scale production of R-MA by a stereospecific nitrilase in an aqueous system was developed. The nitrilase activity of the Escherichia coli BL21(DE3)/pET-Nit whole cells reached 138.6 U/g in a 20,000-L fermentor. Using recombinant E. coli cells as catalyst, 500 mM R,S-mandelonitrile (R,S-MN) was resolved into 426 mM (64.85 g/L) R-MA within 8 h, and the enantiomeric excess (ee) value of R-MA reached 99%. During the purification process, pure R-MA with a recovery rate of 78.8% was obtained after concentration and crystallization. This study paved the foundation for the upscale production of R-MA using E. coli whole cells as biocatalyst.


Assuntos
Aminoidrolases/metabolismo , Ácidos Mandélicos/metabolismo , Reatores Biológicos , Catálise , Meios de Cultura , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio , Ácidos Mandélicos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Água
6.
Food Sci Nutr ; 6(6): 1387-1393, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30258580

RESUMO

Response surface methodology based on Box-Behnken was used to assess the effects of three kinds of texture-improving ingredients, namely, mixed starch (MS) (6%-8%) of sweet potato starch and glutinous rice flour, k-carrageenan (CG) (0.4%-0.6%), and konjac flour (KF) (0.8%-1.2%), on the firmness, elasticity, and water holding capacity (WHC) of emulsified sausage (ES) made from pork and salted egg white (SEW). The three kinds of texture-improving ingredients individually presented different effects on firmness, elasticity, and WHC. Their synergistic effects were significant. The three response models obtained by ANOVA were suitable to predict firmness, elasticity, and WHC. These models can also be used to design formulations for different types of sausage with different firmness and elasticity. The combination of MS (7.36%), CG (0.60%), and KF (1.20%) can produce SEW-containing ES with remarkable firmness (224.04 g), elasticity (8.62), and WHC (8.41).

7.
Pharmacogn Mag ; 14(53): 103-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576709

RESUMO

BACKGROUND: Mulberry fruits are a superior source of polyphenol, especially anthocyanins that contribute potentially to the beneficial effects which include reducing the risk of cardiovascular diseases and cancers with antioxidant, anti-inflammatory, and chemoprotective properties. OBJECTIVES: In this study, purification of the polyphenol-rich extract from mulberry fruit (MPE) was purified and assessed the activities of antioxidant and hemolysis protective in vivo and in vitro. MATERIALS AND METHODS: Antioxidant activities in vitro was measured by quantifying its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and Fe2+-chelating ability. MPE was purified by high-pressure liquid chromatography (HPLC) and analyzed individual polyphenols using liquid chromatography-mass spectrometry (LC-MS)/MS. RESULTS: The total polyphenol content was 147.69 ± 0.02 mg gallic acid equivalents (GAE)/g dried weight (DW) in the extract and 403.55 ± 0.02 mg GAE/g DW in the purified extract. Further identification by HPLC-ultraviolet-visible and LC-MS/MS analysis indicated in MPE, an anthocyanin compound, cyanidin-3-O-glucoside. With regard to in vitro assays, MPE possessed antioxidant effect, especially in Fe2+ chelating ability with an IC50 value of 1.016 mg/mL. The protective effects on mouse red blood cell hemolysis and lipid peroxidation ex vivo were dose and time dependent. CONCLUSION: It indicates that MPE could be a good candidate for future biomedical applications to promote human health with limited side effects. SUMMARY: Mulberry fruit is an excellent source of polyphenols, in particular, anthocyanins, which has infinite health benefits. This study determined the predominant anthocyanin, cyanidin-3-glucoside, could possibly be the rationale behind the antioxidant and antihemolytic effect of MPE. Results indicate that MPE could be a good candidate for future biomedical applications to promote human health with limited side effects. Abbreviations used: MPE: Purification of the polyphenol-rich extract from mulberry fruit, LC-MS: Liquid chromatography-mass spectrometry, HPLC: High-pressure liquid chromatography, DPPH: 2,2-diphenyl-1-picrylhydrazyl scavenging activity, RBC: Red blood cell, GAE: Gallic acid equivalent, FeCl2: Ferrous chloride, H2O2: Hydrogen peroxide, EDTA-2Na: Ethylenediaminetetraacetic acid disodium salt, PBS: Phosphate-buffered saline, TCA: Trichloroacetic acid, TBA: 2-thiobarbituric acid, FeSO4: Ferrous sulphate, MDA: Malondialdehyde, VC: Vitamin C, DW: Dried weight.

8.
Braz J Microbiol ; 45(2): 721-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242964

RESUMO

DNJ, an inhibitor of α-glucosidase, is used to suppress the elevation of postprandial hyperglycemia. In this study, we focus on screening an appropriate microorganism for performing fermentation to improve DNJ content in mulberry leaf. Results showed that Ganoderma lucidum was selected from 8 species and shown to be the most effective in improvement of DNJ production from mulberry leaves through fermentation. Based on single factor and three factor influence level tests by following the Plackett-Burman design, the optimum extraction yield was analyzed by response surface methodology (RSM). The extracted DNJ was determined by reverse-phase high performance liquid chromatograph equipped with fluorescence detector (HPLC-FD). The results of RSM showed that the optimal condition for mulberry fermentation was defined as pH 6.97, potassium nitrate content 0.81% and inoculums volume 2 mL. The extraction efficiency reached to 0.548% in maximum which is 2.74 fold of those in mulberry leaf.


Assuntos
1-Desoxinojirimicina/isolamento & purificação , 1-Desoxinojirimicina/metabolismo , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Morus/metabolismo , Reishi/metabolismo , Biotecnologia/métodos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Folhas de Planta/metabolismo , Reishi/crescimento & desenvolvimento , Tecnologia Farmacêutica/métodos
9.
Braz. j. microbiol ; 45(2): 721-729, Apr.-June 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-723139

RESUMO

DNJ, an inhibitor of α-glucosidase, is used to suppress the elevation of postprandial hyperglycemia. In this study, we focus on screening an appropriate microorganism for performing fermentation to improve DNJ content in mulberry leaf. Results showed that Ganoderma lucidum was selected from 8 species and shown to be the most effective in improvement of DNJ production from mulberry leaves through fermentation. Based on single factor and three factor influence level tests by following the Plackett-Burman design, the optimum extraction yield was analyzed by response surface methodology (RSM). The extracted DNJ was determined by reverse-phase high performance liquid chromatograph equipped with fluorescence detector (HPLC-FD). The results of RSM showed that the optimal condition for mulberry fermentation was defined as pH 6.97, potassium nitrate content 0.81% and inoculums volume 2 mL. The extraction efficiency reached to 0.548% in maximum which is 2.74 fold of those in mulberry leaf.


Assuntos
1-Desoxinojirimicina/isolamento & purificação , 1-Desoxinojirimicina/metabolismo , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Morus/metabolismo , Reishi/metabolismo , Biotecnologia/métodos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Folhas de Planta/metabolismo , Reishi/crescimento & desenvolvimento , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...